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The paper provides an understanding of the various chips 

used to run AI models. It explains the characteristics and 

limitations of these chips which makes them suitable for 

certain AI applications, and not others. It also provides an 

overview of the market landscape and cautions against 

overreliance on a single vendor. It emphasises on exploring 

alternative solutions, and fostering open-source software 

ecosystems necessary for a diverse and resilient AI hardware 

landscape. 
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Executive Summary 

The rise of Machine Learning, Deep Learning, and Natural Language 

Processing has driven unprecedented demand for specialised AI chips. These 

systems require substantial computational resources and can be deployed 

either in cloud data centres for maximum processing power or at the network 

edge for reduced latency and enhanced privacy. 

 

The AI chip ecosystem comprises three critical components: accelerators 

(including CPUs, GPUs, FPGAs, and ASICs), memory and storage systems, 

and networking infrastructure. Each component plays a vital role in handling 

AI workloads, with different architectures offering varying trade-offs 

between performance and efficiency. The market for these technologies is 

heavily concentrated among a few key players: NVIDIA, Intel, AMD, 

Google, and TSMC. 

 

A particular concern is NVIDIA's dominance in the GPU market and its 

proprietary software ecosystem, which creates significant dependencies for 

organisations and nations seeking to build sovereign AI infrastructure. As AI 

becomes increasingly critical to techno-national strategies worldwide, 

policymakers must understand these technological dependencies and support 

the development of alternative hardware and software solutions to ensure a 

more diverse and resilient AI chip ecosystem. 

mailto:ashwin@takshashila.org.in?subject=ashwin@takshashila.org.in
https://www.linkedin.com/in/satyashoovasahu/
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1. Abbreviations 
AI   Artificial Intelligence 

ASIC  Application-Specific Integrated Circuits 

CGI   Computer Generated Imagery 

CPU   Central Processing Unit 

CUDA  Compute Unified Device Architecture 

CXL   Compute Express Link 

DRAM  Dynamic Random-Access Memory 

FPGA  Field-Programmable Gate Arrays 

GDDR  Graphics Double Data Rate 

GPU   Graphics Processing Units 

HBM  High Bandwidth Memory 

HDD  Hard Disk Drive 

HPC   High-Performance Computing 

ISA   Instruction Set Architecture 

LAN   Local Area Network 

LLM   Large Language Model 

ML   Machine Learning 
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NLP   Natural Language Processing 

NVMe  Non-Volatile Memory Express 

NPU   Neural Processing Unit 

PCIe   Peripheral Component Interconnect Express 

PIM   Processing-in-Memory 

ROCm  Radeon Open Compute 

SMRs  Small Modular Reactors 

SoC   Systems-on-Chip 

SSD   Solid State Drive 

TPU   Tensor Processing Unit 

UALink  Ultra Accelerator Link 

UEC   Ultra Ethernet Consortium 

UCIe  Universal Chiplet Interconnect Express 

UPI   Ultra Path Interconnect 
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2. Background 
The emergence of AI marks a significant milestone in the information age. 

As a General-Purpose Technology, AI holds the potential to have a 

transmuting effect on different sectors in different ways—autonomous 

driving in the automotive industry1, fraud detection and risk assessment in 

finance2, personalised marketing in retail3, AI-driven diagnosis and 

personalised medicine in healthcare4, AI-driven weapons and decision 

support systems5—the list is endless. 

 

There is a pervasive interest in leveraging AI technologies for their economic, 

social, and strategic benefits. The size of the AI hardware market was valued 

at over $50 billion in 2023, and it is estimated to grow almost tenfold by 

2030.6 As AI permeates across various sectors, all of this comes with massive 

computational needs that the hardware has to enable and sustain. 

 

A big chunk of this computational need is being met using GPUs. NVIDIA 

is the world's largest GPU company. With its AI-centric GPUs and extensive 

software ecosystem, NVIDIA has emerged as the world leader in AI 

computing.7 It has positioned GPUs as the default choice for companies, 

government organisations, universities or any other entity that wants to 

deploy AI solutions. Case in point - about half of the India’s AI mission 
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outlay of over ₹10,000 crores8 has been earmarked for procuring GPUs to 

build AI computational infrastructure.9 

 

Why is such a large portion of the budget earmarked to build AI computing 

capacity? Why did the Indian government choose GPUs? How do GPUs 

compare to other accelerators like the CPUs, FPGAs and ASICs for AI 

workloads? Does the growing complexity of AI algorithms challenge the 

traditional reliance on GPUs? Are there scenarios where FPGAs and ASICs 

outperform GPUs in AI applications? What implications does the choice of 

hardware architecture have on cost-effectiveness, energy consumption, 

flexibility and scalability?  

 

As AI technologies evolve, policymakers should have a clear and thorough 

understanding of the available AI hardware options and their suitability for 

different use cases. Informed decision-making is necessary to build effective, 

efficient, and future-proof AI computing infrastructure under national 

missions like INDIAai. 

 

This discussion document serves as a primer to understand the key elements 

of AI Chips, and is divided into three broad sections. The first section explains 

the workloads involved in AI tasks in order to understand the computational 

requirements that the hardware has to fulfil. The second section provides a 

comprehensive overview of the key elements of AI computing hardware. 
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These elements include AI accelerators (also called processing units), 

memory, storage, interconnects and networking systems. The section also 

distinguishes AI-specific hardware from other general-purpose computing 

hardware. The third section discusses the linkages between AI accelerators 

and software development ecosystems. 

 

 

 

 

 

 

 

 

 

 

 

 



Takshashila Discussion Document 2024-21              A Primer on AI Chips 

10 
 

3. Understanding AI and its 

hardware requirements 
Artificial Intelligence as a diverse bundle of technologies has existed for 

decades now. As such, the underlying hardware that run these technologies 

is also similarly disparate, and continuously evolving. For instance, the 

computer systems that ran the first image recognition algorithms operated 

differently from those running today’s state-of-the-art facial recognition 

models.10 

 

AI hardware, therefore, encompasses a wide range of computing systems but 

it has recently gained prominence in the public eye due to a dramatic progress 

in fields such as machine learning, and an exponential growth in digitised 

data. At the same time, the ability for algorithms to crunch massive amounts 

of data is directly attributable to the drastic increase in computing power seen 

over the past few decades.11 While other subdomains of AI are still used, 

whenever AI is mentioned today, chances are that it refers to Machine 

Learning (ML). Machine Learning and associated subdomains such as Natural 

Language Processing (NLP), and Deep Learning, form the most significant 

chunk of the global AI market. The scope of this paper is restricted to 

computing hardware relevant to ML and associated fields. 
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Three main technological inputs12 come together to make these models 

work: 

1. The algorithms that form the brains of the AI models,  

2. The data that these algorithms learn from,  

3. And finally, the hardware that enables the algorithms to learn and run.  

 
Source: Authors’ Visualisation 
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Understanding the interaction between algorithms and the data in machine 

learning models provides a useful background to realise the computational 

requirements that the hardware has to fulfil.  

 

These interactions can be broadly divided into two stages: training and 

inference. Algorithms undergo training where they learn from existing data. 

Once sufficiently trained, they can be used for inference, that is, to make 

predictions and draw conclusions about new data.13 

 

3.1. Training 
The foundation of AI is created during the training phase. It creates a 

mathematical model that can process new data to make valid predictions and 

draw accurate conclusions.14 Training enables AI models to learn from 

supervised and unsupervised data and improve over time—essentially self-

program.  

 

There are various training types, all of which generally train over multiple 

stages or iterations. In each iteration, the model is taught from some data 

points in the dataset. The nature of the data varies depending on the model. 

For a model trained to interpret visual information, the datasets consist of 

images and videos. For an AI model that is trained to understand human 

language, called a Language Model (Large or Small LM, or LLM/SLM), the 

data consists of the language in textual form.   
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The process of training an AI model and the corresponding computational 

demands is explained using the example of an LLM below.15 

 

Collecting the data points in the dataset: The dataset should have numerous 

data points sufficient to capture the nuances of human language. The data 

sources can come from user-generated content on the internet, books, web 

pages, etc. The datasets for recent LLMs may consist of terabytes of text.16 

 

Pre-processing the datasets: The datasets have to be converted into a format 

that AI models can process. The data is cleaned of irrelevant content and 

converted from text to numbers—the format that the AI understands and 

interprets.17  

 

Training and Testing: The model starts with an initial understanding of the 

language that may be random gibberish. A partial sentence of a certain length 

is fed into the model. The model uses this input to predict the next part of 

the sentence. Based on the accuracy of the prediction, the AI algorithm 

readjusts its initial understanding. 

  

Just a single one of these iterations can require up to billions of mathematical 

calculations.18 One complete pass of an entire dataset through the model is 

called an epoch. Given that a single iteration of processing one input requires 

billions of calculations, a single epoch may require many billion billion 
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calculations. Training typically involves multiple epochs, as many as several 

thousand in some cases.  

 

These calculations are mostly independent matrix multiplications. Each 

matrix multiplication does not always require the result of another matrix 

multiplication which means they can be run independently and in parallel.  

According to OpenAI’s estimations, the training of the GPT-3 model took 

over 300 billion trillion floating point calculations.19 Considering that 

running these operations on a single NVIDIA Tesla V100 GPU would take 

355 years20 and that GPT-3 was trained on 10,000 V100 GPUs,21 the total 

training time is estimated to be around 34 days.  

 

Therefore, training involves processing massive amounts of data, 

necessitating significant computational resources. While sustaining 

computing power at this scale, AI hardware's cost-effectiveness, 

performance, and power consumption are important considerations. 

 

3.2. Inference 
AI models are deployed in real-world environments after training. This stage 

is called inference. The models process new, real-world data to make valid 

predictions and draw accurate conclusions. While less demanding 

computationally, AI inference use cases have different computational 

requirements. These may include latency, performance, memory, storage, 
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energy efficiency, privacy, and scalability requirements. The type of inference 

use case has a bearing on the type of hardware infrastructure required to run 

the AI models.  

 

3.2.1 AI on the cloud 

LLM chatbots like OpenAI’s ChatGPT, for instance, are computationally 

very intensive, requiring significant processing power and memory. Such 

extensive utilisation of compute hardware also has extensive energy demands 

and heat generation. Therefore, these AI systems are deployed in data centres 

that have the necessary high-performance hardware along with dedicated 

cooling and power infrastructure to service high volume, sustained AI 

workloads.22  

 

3.2.1.1 AI run by Data Centres 

Data centres have emerged as an integral part of AI-on-the-cloud 

infrastructure. Data centres are large-scale facilities that host hardware at 

scale and thus efficiently provide computational resources.23 They are 

increasingly used to train and run large AI models, and barring a few 

considerations such as software platform support, most customers running AI 

workloads do not have to worry about the minutiae of the computing 

hardware of these data centres.24 
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Optimised not just for AI workloads but also other HPC tasks, data centres 

house dense clusters of specialised hardware.25 The image below shows a 

cluster of GPUs in a data centre.  

 

 
A GPU Cluster at a Data Centre © CSIRO 26  

 

Along with specialised processing chips, they have to also feature enormous 

amounts of high-performance memory and storage systems. All these 
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components need to be connected via highly performant networking and 

interconnect solutions to enable rapid data transfers without delays.27 These 

networked clusters of compute infrastructure are so well-coordinated that 

they are usually considered a single unit of high-performance compute 

themselves. Consequently, as data centres composed of these compute 

clusters become the sole choice available to customers running AI workloads, 

they have become the de facto unit of AI compute infrastructure.28  

 

As a unit of compute, scalability is also a key requirement of these centres.29 

They have to be designed to be modular with easy expansion. They also need 

to be amenable to quick upgrades to newer generations of specialised 

hardware. The goal is to have data centres that can evolve further as AI 

workloads change, without needing to be redesigned or rebuilt. 

 

All of the operations in the data centre require large amounts of 

uninterrupted energy. The largest data centres can consume up to tens of 

hundreds of megawatts,30 and therefore, also require effective thermal 

management with advanced cooling solutions. Additionally, they need 

sufficient levels of redundancy built in to ensure reliability and minimise 

downtime. These high standards of operation impose significant hardware 

investments and innovation.  
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An AI-focused Data Centre © Free Malaysia 31  
 

However, the AI in the cloud, powered by data centres that are often large 

distances away from end-users, cannot cover all AI use cases. For instance, 

highly powerful computing resources of a data centre will not always be able 

to meet the ultra-low latency operations required for ML workloads for a 

fitness tracker or a smartwatch, since user data needs to contend with the 

transmission and processing times associated with cloud computing. These 
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use cases and devices require the processing and source of data input to be in 

close proximity. 

 

3.2.2 AI on the Edge 

There are many use cases such as autonomous driving or traffic management, 

where it would be impractical to centralise the computing power due to the 

AI algorithm needing to operate with very low latency or to preserve data 

privacy. In such a scenario, computing resources are instead placed closer to 

the source of inputs—the users at the network's edge. These systems are 

referred to as Edge AI.32  

 

Edge AI can vastly increase the scope of AI applications in the real world. 

This has easy and innovative use cases across multiple sectors. These 

possibilities have emerged due to advances in computing infrastructures, 

which have become small, fast, efficient, and specialised enough.  

 

For instance, Edge AI systems can assess sensor data in industrial equipment 

to detect anomalies and potential issues early and minimise downtime.33 In 

these systems, the Edge AI hardware must continuously monitor and assess 

data in harsh conditions and balance edge and cloud communication.  

Remote monitoring through continuous health data analysis using Edge AI 

with secure processing and low power consumption can be used to improve 

patient outcomes.34 Edge AI can enable user health data to be stored and 
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processed locally as opposed to being sent to the cloud. This ensures privacy 

and gives users greater control over their personal data. 

 

In the case of autonomous vehicles, Edge AI, with low latency, high energy 

efficiency and bespoke processing capabilities for interpreting multiple sensor 

inputs, is necessary to process data from cameras, GPS and other sensors for 

real-time decision-making.35 Similar use cases exist in traffic management, 

agriculture, customer analytics, etc.  

 

Even consumer laptops have AI models deployed on-device that run on 

customised mobile processors.36 Each of these steps has a bearing on the 

hardware consideration for the computations. Low latency becomes essential 

to ensure a real-time, seamless experience. High processing power and 

memory efficiency are necessary to handle high-traffic applications. 
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4. Understanding the hardware that 

makes AI computation possible 
The interaction of data and algorithms that results in functional AI models is 

powered by the underlying hardware architectures, enabling the 

computational prowess required for AI tasks ranging from facial recognition 

in smartphone photography to climate modelling on supercomputers.37 

 

This document focuses on three key categories of AI hardware components: 

processing units or accelerators, memory and storage systems, and 

networking and interconnects infrastructure. 

 

4.1. Processors/Accelerators: The ‘engines’ 
The processors, or accelerators are the “engines” of the AI systems. They are 

responsible for crunching the complex mathematical and algorithmic 

operations over the course of the training as well as the inference stages. There 

are broadly four types of processing units.  
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4.1.1. Central Processing Units (CPUs) 

CPUs are general-purpose accelerators that can handle a wide range of tasks, 

including AI workloads. These are at the heart of almost all consumer 

computing electronics like PCs, smartphones, and laptops.38  

 

While they are flexible and easy to program, they may not provide the 

optimal performance for AI applications compared to more specialised 

accelerators. In an effort to remedy this, newer CPU Systems-on-Chips 

(SoCs) dedicate a section of the silicon die to a specialised architecture meant 

only for running AI workloads locally. Often referred to as Neural Processing 

Units (NPUs), they are intended to address the traditional weakness of CPUs 

at training or inference tasks.39  

 

American companies, Intel and AMD, are the major players in the CPU 

market. While Intel maintains a significant market share and has long-

standing established relationships with OEMs, AMD’s processors have 

wrested market share away in recent years with gains in performance and 

power/thermal efficiency.40 Both AMD and Intel maintain a quasi-duopoly 

on the x86 Instruction Set Architecture (ISA) that forms the foundation of 

their chip designs. NVIDIA, known for their GPUs, are a recent entrant into 

the CPU space, with their ARM-based “Grace” processor.41  
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In the mobile devices market, the ARM-based accelerators dominate. UK-

based ARM creates design blueprints for processing units and licences them 

out to other companies like Apple, Samsung and Qualcomm. The latter 

modify or incorporate the licensed ARM designs, make necessary 

customisations and create their own CPUs within Systems-on-Chips (SoCs). 

These customisations include adding unique features like NPUs.42 

 

Taiwan’s TSMC is a major manufacturer of most of these cutting-edge 

accelerators. Samsung in Korea also manufactures advanced accelerators but 

has lower volumes. Meanwhile, Intel, which used to manufacture its own 

chips in the US and Israel, has encountered difficulties in remaining abreast 

of the manufacturing capabilities of TSMC. The US is therefore also trying 

to catch up and build capabilities to fabricate the most advanced processors. 

 

 
An Intel CPU © Intel 43  
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4.1.2. Graphics Processing Units (GPUs) 

GPUs have become the dominant processing units for AI, particularly for 

training highly complex AI models.44 Originally coined as a term for 

accelerators meant for rendering graphics in video games, and other 

Computer-Generated Imagery (CGI),45 they are designed to perform 

parallel computations on large datasets, making them well-suited for the 

matrix operations of AI algorithms.46  

 

GPUs have been instrumental in the rapid advancement of AI capabilities in 

recent years, partly due to their accepted prevalence in scientific computing 

tasks that have leveraged parallel processing capabilities, as well as increased 

ease of use in programming them.47 Their use is prevalent in data centres 

specialised to run AI workloads.  

 

NVIDIA has a monopoly in the GPU market and has captured nearly all of 

the market share, with AMD in a distant second place.48 It has also pivoted 

majorly to AI and data centre-based GPUs away from its traditional gaming 

GPU roots. Intel also makes GPUs of its own but remains a minor player.49 

GPU design is heavily concentrated in the US where NVIDIA, AMD and 

Intel are headquartered. NVIDIA and AMD are fabless companies that 

design and sell their own chips but do not manufacture them. The 

manufacturing is outsourced to East Asia where it is concentrated, 

particularly at TSMC in Taiwan. This combination of factors has prompted 
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investments in the US, Europe, China, and India to explore production 

capabilities and enhance supply chain resilience.50  

 

 
A GPU © Nvidia 51 
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4.1.3. Application-Specific Integrated Circuits (ASICs) 

Being the most specialised of the processing units, ASICs are chips that are 

designed from the outset for a specific set of tasks, such as AI inference, 

sometimes within more-specific temperature, power, and space thresholds as 

compared to CPUs, and GPUs etc.52  

 

As such, they provide the highest performance and energy efficiency for their 

target workloads,53 but as a trade-off, they lack the flexibility of other 

processing units. Examples of AI ASICs include Google's Tensor Processing 

Units (TPUs),54 and Cerebras’ Wafer-Scale Engine.55 TPUs, for instance, are 

designed at the silicon level for AI workloads that take advantage of Google’s 

TensorFlow framework. Since the specific range of operations enabled by this 

framework is known beforehand, the chip design can be optimised only for 

them. Because of this, TPUs can deliver high performance and energy 

efficiency for both AI inference and training tasks in Google’s data centres.56 

Vast number of TPUs are used in compute clusters like data centres to train 

and run AI models. Because of their custom-nature, ASICs can prove to be 

expensive.57  

 

The market for ASICs Is less concentrated than that of GPUs and CPUs.58 

There are many big tech companies as well as startups building ASICs for AI 

workloads, with demand also similarly disaggregated in terms of volumes 

shipped. Given the large size of the market and scope for specialisation, 
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companies try to find their own niche.59 Google and Intel are the notable big 

players with other emerging ones like Graphcore, Cerebras Systems, Groq, 

Tenstorrent, Mythic and Blaize. However, like all advanced semiconductor 

manufacturing, there is significant market concentration in East Asia for 

manufacturing ASICs.60  

 

 
A TPU © Google 61 
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4.1.4. Field-Programmable Gate Arrays (FPGAs) 

FPGAs are reconfigurable integrated circuits that can be programmed to 

perform specific tasks, including AI workloads. Their versatility lies in being 

able to switch between different types of workloads post manufacturing, 

treading a middle-ground between the flexibility of CPUs and the 

performance of ASICs. This makes them attractive for certain AI 

applications, especially in scenarios where algorithms evolve rapidly, but 

without the costs of leveraging ASICs.62  

 

 
An FPGA Board © Altera 63 
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It also makes FPGAs an essential input in AI hardware and software R&D, 

allowing for experimentation and prototyping by researchers and students.64 

FPGAs are predominantly seen in areas like defence electronics, networking, 

space research and exploration etc where adaptability of functions is an 

important factor.65  

 

Like the CPU market, the FPGA market is dominated by Intel and AMD 

again.66 While Intel fabricates some FPGAs in-house, TSMC is again a major 

manufacturer of FPGAs. 

 

We can evaluate different types of AI-specific accelerators across two key 

dimensions: performance, and efficiency. 

 

“Performance” encompasses considerations that enable an accelerator to 

quickly process high volumes of data and complex AI workloads. This 

captures multiple metrics: raw processing power to crunch precise 

mathematical operations; high memory bandwidth and capacity to feed data 

to the processing unit; low latency to provide fast response times to end-users; 

scalability for tackling massive datasets and models as per use cases; and 

finally, the ease of programmability. 

 

“Efficiency” encapsulates the cost and sustainability aspects of operating AI 

systems built using different accelerators. This covers metrics such as the 

energy consumption of powering and cooling the units, the upfront purchase 
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costs and long-term operating expenses, and also the overall environmental 

footprint. 

 

 
Source: Authors’ Visualisation: A Rule of Thumb comparison of some popular 

accelerators 
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Criteria CPUs GPUs FPGAs ASICs 

Processing 
Peak Power 

Moderate High Very High Highest 

Power 
Consumption 

High Very High Very Low Low 

Flexibility Highest Medium Very High Lowest 

Training Poor at training The only 
production-ready 
training hardware 

Not 
efficient 

Potentially, best 
for training, but 
not available yet 

Inference Poor for inference at 
scale, useful for smaller 
workloads on the edge 

Average for 
inference 

Best for 
inference 

Efficient at 
inference for 

highly tailored 
workloads 

Source: Author’s Recreation67 
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4.2. Memory and Storage Systems: The ‘fuel 

lines’ and ‘fuel tanks’ 
If processing units are visualised as the “engines” of AI systems, memory and 

storage systems are the veritable fuel lines and the fuel tanks that ensure that 

these systems run properly. AI models need to be fed with extremely large 

volumes of data as they are being trained.68 The models need to be able to 

store this data. Further, during inference, they need to be able to access input 

and return output data rapidly, consistently, and reliably. This storage, access 

and transfer of data is made possible by different types of memory and storage 

systems.  

 

4.2.1. Memory  

4.2.1.1. Random-Access Memory (Dynamic RAM) 

Dynamic RAM (DRAM) is the most common type of main memory used in 

AI systems. It offers relatively high capacity and bandwidth but compared to 

other types of memory, it can be a bottleneck for data-intensive AI 

workloads.69 It is usually leveraged by processing units like CPUs, and is 

usually physically situated away from the latter. A combination of CPUs and 

DRAM is the most common configuration found in consumer computing 

devices like smartphones and PCs.70  
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4.2.1.2. High Bandwidth Memory (HBM) 

HBM is a specialised type of memory that provides much higher bandwidth 

than traditional DRAM. It is increasingly used in high-performance AI 

hardware. HBM stacks memory chips vertically and places them closer to the 

accelerator.  

 

HBM modules take advantage of advanced packaging technologies to stack 

modules vertically, and are placed much closer to the logic processing unit, 

on the silicon die itself. Therefore, HBM is better placed for latency-sensitive 

tasks since the physical distance that electrical signals need to cross between 

processing and storage is lower.71 This significantly reduces the time and 

energy required to move data, enabling more complex AI models to run 

efficiently. HBM has been crucial in advancing areas like real-time video 

analysis and scientific simulations.72  

 

4.2.1.3. Graphics Double Data Rate (GDDR) 

GDDR is a type of DRAM that offers much higher bandwidth and lower 

latency than standard DRAM. GDDR can be used in GPUs for AI workloads 

when cost is a primary concern or when the workloads and datasets are 

relatively small.  

 

In contrast to HBM, GDDR memory modules are situated on the board 

instead of on the GPU’s silicon die. Therefore, it is generally less efficient 
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than HBM in terms of power consumption and suffers comparatively on 

latency and bandwidth metrics. On the flip side, GDDR offers lower cost, 

wider availability, and lower memory requirements.73 

 

Given the high barriers to entry, the global market for memory systems is 

oligopolistic. Samsung, SK Hynix and Micron Technology have almost all of 

the market share. China’s YMTC has suffered in its capability to develop 

HBM production facilities due to US sanctions.74 Samsung and SK Hynix 

are South Korean companies while Micron is American. Due to the highly 

commoditised nature of memory chips, all the major players in the DRAM 

market are Integrated Device Manufacturers, and manufacture their own 

memory chips.75  

 

4.2.2. Storage 

While memory systems focus on rapid data access for active computations, 

data storage is crucial for maintaining vast amounts of data that AI systems 

need for training and inference. AI datasets can easily reach into the 

petabytes,76 requiring massive storage capacity and fast access speeds. The 

viability of a data storage architecture is dependent on a variety of factors 

such as scalability, availability, security, performance, and resiliency.77 

Storage solutions can therefore be configured to favour one or some of these 

factors based on system requirements. Key components include: 
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4.2.2.1. Solid State Drives (SSDs) 

These offer faster read and write speeds compared to traditional hard disk 

drives, making them valuable for AI workloads that require frequent data 

access. NVMe (Non-Volatile Memory Express) SSDs, in particular, provide 

high-speed storage and retrieval, low latency, and high-throughput. NVMe 

SSDs are a popular choice in data centres to host the datasets required to run 

AI models. 78  

 

In addition to Samsung, SK Hynix and Micron, Western Digital, Seagate and 

Kioxia (Japan) are some notable players in SSD manufacturing. The 

production is mainly concentrated in South Korea, Japan, China and the 

US.79  

 

4.2.2.2. Hard Disks Drives (HDDs)  

While slower than SSDs, HDDs offer larger capacities at lower costs, making 

them suitable for storing vast datasets used in AI training. They are often used 

in tiered storage systems, where frequently accessed data is stored on faster 

SSDs while less frequently used data resides on HDDs.80  

 

The HDD industry has consolidated into three major players–Seagate, 

Western Digital and Toshiba that have almost all of the market share.81  
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4.2.2.3. Tape Storage 

For archival purposes and extremely large datasets that do not require quick 

retrieval, tape storage provides a cost-effective solution. While access times 

are slow, tape storage can be useful for storing historical data or backups of 

AI models and datasets.82  

 

Characterised by limited suppliers of key components, most of the tape 

storage production happens in Japan and the US by companies like IBM, 

Quantum and Fujifilm.83  

 

Memory and storage solutions may not directly form part of the calculus 

when it comes to taking investment decisions for AI infrastructure. Usually, 

the choice of the processing unit and use-cases will also determine the choice 

of memory and storage solutions due to tight integration.84 However, as 

mentioned, memory chips are also highly commoditised and subject to 

intense geopolitical and geoeconomic pressures, due to the nature of global 

value chains as well as a steadily escalating US-China trade competition.85  

 

 

 

https://www.sciencedirect.com/science/article/pii/S2773064622000160
https://www.sciencedirect.com/science/article/pii/S2773064622000160
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Criteria DRAM HBM GDDR SSDs (NVMe) 

Purpose General-purpose 
main memory 

primarily used by 
CPUs 

High-performance AI 
and enterprise 

workload-specific 
memory 

Graphics rendering Long-term data 
storage and retrieval 

Bandwidth (higher is 
better) 

Moderate Very High High Low 

Latency (lower is 
better) 

Moderate Low Low High 

Strengths High capacities and 
supply, low cost 

Highest bandwidth, low 
latency 

Good balance of 
performance and 

cost 

Large capacity, fast for 
storage compared to 
legacy options like 
HDDs and Tape 

Weaknesses Can be a bottleneck 
for data-intensive AI 

workloads 

Expensive, complex 
manufacturing; 

concentrated supply 
chains 

Less efficient than 
HBM 

Not as fast as RAM 
for active 

computations 

Supply Chain 
Considerations 

Oligopolistic market 
dominated by 

Samsung, SK Hynix, 
Micron 

Same as DRAM; 
China's YMTC facing 
challenges due to US 

sanctions 

Similar to DRAM, 
produced by same 

major players 

Many suppliers 
including Samsung, 
SK Hynix, Micron, 

WD, Seagate, Kioxia 

Source: Authors’ Visualisation 
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4.3. Interconnects and Networking 

Capabilities: The ‘highways’  
Interconnects serve as the metaphorical highways of AI hardware, enabling 

data transfer between processing units, memory, and storage. Interconnects 

and networking capabilities are essential for enabling efficient 

communication between AI hardware components, both within a single 

system and across multiple data centres.86 Broadly, there are three kinds of 

interconnect and networking technologies leveraged across the AI hardware 

technology stack: 

 

4.3.1. On-Chip Interconnects 

On-chip interconnects facilitate communication between different parts 

within a system-on-chip (SoC). An SoC contains various aforementioned 

components like a CPU, a GPU, memory and storage.  

 

As Moore’s law87 hits the limitations of physics,88 chips have pivoted towards 

using separate parts of the chip for separate tasks, integrating them on the 

same foundational structure of the chip.89 The resulting chiplet would be able 

to retain better performance, improvements in thermal and power 

requirements and easier manufacturing.90 The on-chip interconnects enable 

fast and efficient communication within the chiplets.91 
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As of now, very few firms such as TSMC (Taiwan), Samsung (South Korea), 

and Intel (US) etc, have the ability to develop advanced packaging 

technologies.92 The fabrication stage of the semiconductor global value chain 

(GVC) is already dominated by these players.93 This dominance is further 

amplified in AI chips.94  

 

4.3.2. Chip-to-Chip Interconnects 

Chip-to-chip interconnects enable high-speed communication channels 

between multiple chips within the same system.95 Technologies like 

NVIDIA's NVLink or Intel’s Ultra Path Interconnect (UPI) enable high-

bandwidth, low-latency connections between multiple NVIDIA GPUs or 

Intel CPUs,96 respectively. This is what allows for the creation of powerful 

compute clusters of processing units,97 and therefore, for scaling up 

computations and performance to tackle complex AI workloads.  

 

However, due to the degree of their integration with the architecture of the 

processing units themselves, these interconnect technologies are typically 

proprietary. For instance, AMD’s GPU offerings are not compatible with 

NVLink, as the latter requires specific hardware and software support from 

NVIDIA.98 Therefore, the choice of processing unit also determines the 

nature, and capabilities of downstream technologies essential for the 

functioning of AI compute infrastructure. 
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The capabilities of processing units, motherboards, and storage solutions are 

often tied to their support of the newest iteration of the PCIe standard. The 

total number of PCIe lanes supported by an AI system directly affects its 

scalability as more GPUs etc can be connected to it.99  

 

Therefore, the choice of platforms and other peripherals directly correlates 

with the choice of processing units or memory solutions. Higher end 

platforms, which can support a higher number of interconnects, will cost 

more, and may be in higher demand, amidst potential supply-chain 

constraints. The question of vendor and ecosystem lock-in also becomes 

pertinent, since the ability to mix-and-match similar processing units sourced 

from different vendors remains limited.  

 

4.3.3. Node-to-Node Interconnects 

These refer to communication channels between different “nodes” of a 

compute cluster. Examples of a compute cluster could range from simple 

arrangements of home PCs connected via LAN to more complex ones such 

as server clusters in data centres.100 Node-to-Node interconnects enable this 

communication providing high-speed data transfers and low-latency 

responses. 

 

The most common technologies used here are Ethernet and InfiniBand. The 

former is an open 50-year-old connectivity technology that sees both 
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commonplace use for providing broadband internet to homes, as well as for 

communications between data centres and enterprises. The latter was 

developed to be a more performant replacement to Ethernet in the 1990s and 

initially found success only in High-Performance Computing (HPC) 

environments such as supercomputers.101 It has since become a widely 

deployed interconnect technology in HPC data centres, and cloud 

computing.102  

 

Estimates suggest that upwards of 90% of scalable AI systems use this 

networking architecture.103 InfiniBand’s main strength over existing 

Ethernet solutions is its relatively high data integrity during the transfer of 

data between nodes. A lack of data integrity can slow down AI training 

workloads, and therefore, has a direct impact on costs and efficiency in the 

AI value chain.104 On the other hand, Ethernet has a slightly higher 

bandwidth ceiling,105 and it has relatively lower implementation costs.  

 

Since InfiniBand is an open industry standard interconnect specification,106 it 

means that other firms can still produce InfiniBand solutions to enable high-

bandwidth HPC networking for their AI system offerings. However, 

NVIDIA’s partnerships (with leading server vendors and data centre 

operators),107 continued innovation of the standard,108 and its dominant share 

in the upstream GPU market109 have ensured that its InfiniBand-based 

products command the lion’s share of the downstream networking solutions 

market as well.110 The openness of this standard theoretically makes 
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customers of InfiniBand technology less susceptible to vendor lock-in; in 

practice however, the combination of the above factors create network effects 

that make it difficult for competitors to unseat NVIDIA’s market 

dominance. 

 

Investments in advanced interconnect technologies can be as important as 

investments in processing units themselves for building a presence in the AI 

global value chain (AI GVC). Standards like CXL, UALink, UCIe, and 

UEC are expected to play a significant role in the future of AI hardware, 

providing a standardised, interoperable foundation for high-performance, 

multi-vendor systems. A long-term policy strategy to incentivise 

homegrown hyperscalers to add to, and implement open standards like UEC 

can lower entry barriers for small AI data centre players. The presence of a 

large number of such networking-solution providers can potentially exert a 

countervailing pressure on NVIDIA’s market concentration in this 

downstream market.111  
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Criteria On-Chip Interconnects Chip-to-Chip Interconnects Node-to-Node 
Interconnects 

Scale of 
Integration 

Within SoC or across 
chiplets 

Between chips in a system Between separate compute 
nodes (ex: data centres) 

Key 
Technologies 

Chiplets, Through-Silicon 
Vias (TSVs), Silicon 

interposers 

NVLink, Intel UPI, PCIe, 
CXL, UCIe 

InfiniBand, Ethernet 

Proprietary vs 
Open 

Mostly proprietary Mix of proprietary and open 
standards 

Predominantly open 
standards 

Market 
Concentration 

High (TSMC, Samsung, 
Intel) 

Moderate to High (NVIDIA, 
Intel dominate proprietary 

solutions) 

Moderate (NVIDIA 
dominates InfiniBand-based 

solutions market) 

Impact on AI 
Performance 

Critical for chip efficiency Enables multi-GPU/CPU 
systems and affects scalability 

for workloads 

Crucial for distributed AI 
training where workloads 
are spread across multiple 

nodes 

Future Trends 3D packaging, advanced 
chiplet integration 

Adoption of CXL and UCIe 
standards 

Ultra Ethernet Consortium 
(UEC) development 

Supply Chain 
Considerations 

Limited to advanced 
foundries; potential 

bottleneck in AI chip 
production 

Dependent on GPU/CPU 
manufacturers, PCIe offers 
some flexibility for vendor 

choices 

Broader supplier base for 
Ethernet; InfiniBand 
solutions largely from 

NVIDIA 

Source: Authors’ Visualisation 
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 Box 1: Distinguishing AI Hardware from General-Purpose Computing Hardware 

General-purpose hardware, which can include CPUs and GPUs meant to be end-consumers, can be 

considered as a superset that includes hardware components used for a wide range of computing tasks, 

including AI workloads. AI hardware, on the other hand, is a subset of this superset, specifically designed 

and optimised for AI applications. 

 

For instance, both the NVIDIA RTX 4090 gaming GPU, and the AI-specific NVIDIA H100 GPU use 

16 lanes of the common PCIe Gen 5 interconnects to interface with the system's other components. 

However, the RTX 4090 is not designed at the architecture level for relatively high levels of precision in 

matrix arithmetic operations needed for AI workloads. On the other hand, the H100 is designed to do just 

that at very high levels of precision. GPUs like the H100 also support arithmetic instruction formats that 

can be leveraged for processing AI workloads faster; this is something that consumer-oriented GPUs like 

the RTX 4090 are not designed to support, and are consequently, significantly slower at the same tasks. 

 

Similarly, the RTX 4090 is equipped with only 24 GB of slower GDDR6X memory as compared to the 

H100's 80 GB of much faster HBM3e memory. Importantly, the RTX 4090 can only interact with other 

GPUs on the same system via PCIe, while the H100 has NVLink, which as mentioned earlier, is a much 

faster chip-to-chip interconnect. 

 

Therefore, despite sharing similar characteristics and components, general-purpose computing hardware 

may be inadequate for the purposes of running AI workloads. Consumer-grade GPUs may be able to 

support AI workloads at a smaller scale, but they are not designed to fully replace dedicated AI hardware 

in large-scale deployments or HPC environments. 

 

Despite the limitations of consumer-grade computing hardware like the RTX 4090, Chinese firms 

attempted to use these GPUs as a substitute for dedicated AI hardware like the H100 in the wake of the 

October 2022 unilateral US export controls on advanced chips. Subsequently, the export control 

thresholds were expanded to cover the computing capabilities of both the H800 and the RTX 4090 GPUs. 
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5. Understanding the software that 

supports AI hardware 
While the interaction of data and algorithms that results in functional AI 

models is powered by the underlying hardware, the hardware itself is 

dependent on certain software components. Much like how consumer PCs 

and smartphones are dependent on their operating systems, the performance 

of AI processing units, also known as AI accelerators, can only be realised 

through the software ecosystems that support their deployment.112 Software 

frameworks, libraries, and programming languages harness the processing 

capabilities of accelerators and simplify the development process for models 

and applications that run on them. As such, whether or not an AI accelerator 

meets with widespread success and adoption in the industry is heavily 

dependent on the maturity and ease of use of their compatible software 

ecosystems.  

 

5.1. The AI Software Ecosystem 
The AI software ecosystem broadly consists of: AI frameworks, 

programming languages, and programming platforms. This paper focuses on 

the software ecosystem relevant in the downstream stages of the AI value 

chain, i.e., models, and applications. While outside the scope of this paper, 
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various software and data analysis tools also exist for processing data before it 

is used for training and inference. 

 

The term AI Frameworks broadly refers to the pre-made tools and libraries 

that developers can use to create, train, and test AI models.113 Frameworks 

relieve developers of the need to be minutely aware of the complexities of 

managing the hardware’s low-level operations (like memory management) 

and are usually hardware-agnostic – which means they can run on CPUs and 

GPUs as well as other specialised accelerators. That said, many frameworks 

have optimisations for specific chip architectures.114  Prominent examples of 

AI frameworks include TensorFlow, PyTorch, and MXNet.  

 

Programming languages (such as Python and Julia),115 used in AI 

development serve as the interface between developers and AI frameworks. 

Python, in particular, has become the de facto standard for AI developers 

since it is simple and easy to learn, and has a mature and extensive ecosystem 

of libraries useful for scientific computing.116 

 

As mentioned earlier, high-level languages and frameworks aim to be 

hardware-agnostic, but developers often rely on lower-level, accelerator-

specific features to achieve optimal performance. This is where a custom 

software development platform can come into play.  
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Programming platforms like NVIDIA’s proprietary CUDA (Compute 

Unified Device Architecture) are a prime example.117 CUDA encapsulates a 

suite of software tools, libraries, and APIs specifically designed for NVIDIA 

GPUs. It provides a familiar programming interface to developers using 

common languages like C, C++, and Fortran, and allows them to write code 

that can directly access the parallel computing capabilities of the GPU to 

greatly speed up computing tasks.  

 

5.2. CUDA and its absent competition 
CUDA was developed to address the challenges in programming GPUs for 

general-purpose computing tasks. GPUs could potentially accelerate heavily 

parallelised workloads (graphics rendering was just such a task), but before 

CUDA, programming for them required low-level coding skills and a deep 

understanding of the underlying chip architecture.118  

 

NVIDIA tackled this problem in two ways.119 First, NVIDIA introduced a 

GPU chip design architecture that was composed of smaller programmable 

units, termed generally in the industry as “shader units”. Second, NVIDIA 

created the CUDA software development platform that specifically allowed 

coders to write programs for these units (now referred to as “CUDA cores”) 

on its GPUs.120  
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The CUDA platform was designed to attract developers by advertising the 

massive parallel computing power of GPUs on the back of very little in the 

way of learning barriers, by highlighting its similarities with other common 

programming languages. In a nutshell, CUDA as a software platform is 

inextricably integrated with the silicon-level hardware architecture.  

 

This closed CUDA-GPU integration means that potential competitors are 

prevented from leveraging the CUDA platform, as NVIDIA’s hardware 

architecture IP remains proprietary.121 CUDA itself is free to use, and 

NVIDIA invested in optimising different sub-platforms of CUDA meant for 

specific use-cases in industry and research, such as Robotics, Machine 

Learning, Data Centres etc. The commonality afforded by the platforms 

ensured that applications across a wide range of domains would also be 

compatible with all NVIDIA GPUs. NVIDIA invested heavily in training 

courses and outreach in this regard (and continues to do so), ensuring that 

both academia and industry adopted its GPUs for their needs.122  

 

The CUDA ecosystem has therefore created two-sided network effects 

stemming from both developers (supply) and industry (demand) utilising the 

same GPUs and software platform.123  

 

CUDA's exclusivity has been a key factor in NVIDIA’s dominance in the AI 

hardware market. The closed integration of the software development 
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ecosystem with the hardware has enabled NVIDIA to charge supra-

competitive prices for its GPUs across both gaming, and enterprise sectors.124  

 

 
Source: Authors’ Visualisation (Data from Visualcapitalist)125 

 

5.3 CUDA alternatives 
Several alternative software ecosystems to CUDA exist; however, these have 

struggled to match CUDA’s maturity and performance stemming from 

NVIDIA’s first-mover advantage and the network effects created by its large 

user-base. The most prominent competitor to CUDA is AMD’s Radeon 

Open Compute (ROCm). 

 

ROCm is a platform designed for use with AMD’s GPUs, providing a suite 

of software tools and libraries to developers, similar to CUDA. While 
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relatively new and lacking in overall support,126 ROCm has two key benefits: 

first, it includes an abstraction layer, HIP (Heterogeneous-Compute 

Interface for Portability),127 that allows developers to convert CUDA 

applications easily to run on AMD GPUs in a short timeframe. Second, its 

open-source nature potentially allows for long-term developer buy-in, and 

crowdsourced additions to its range of libraries. These two factors offer a 

major value proposition for developers and organisations concerned about 

vendor lock-in.  

 

CUDA has undoubtedly accelerated the adoption and innovation of AI. 

However, from a policy perspective, it is a case study that highlights the 

unsavoury implications of proprietary software ecosystems in the AI 

hardware market. Besides market concentration risks, vendor lock-in, and 

other competition barriers, nation-states seeking to build sovereign AI 

infrastructure using GPUs will have to contend with the strategic 

dependency associated with being reliant on a single provider like NVIDIA. 
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Box 2: Translation Layers 

Translation layers are software that allow code written for a particular hardware architecture to run on a 

different architecture. They essentially "translate" this code between disparate systems, and therefore, enable 

application compatibility across GPUs from different vendors. 

 

As mentioned earlier, AMD's HIP can be considered a translation layer; however, it requires developers to 

manually port CUDA applications to run on AMD GPUs. However, a true translation layer allows for 

CUDA applications to interface with a non-NVIDIA GPU as if it were one, on-the-fly. 

 

The most prominent example of a translation layer is ZLUDA, which allowed first, Intel, and subsequently, 

AMD GPU users, to run CUDA applications natively without the need for developer intervention, or 

source-code generation as an intermediate step. Despite not providing 100% compatibility or performance, 

ZLUDA received developer interest, and AMD funded the open-source project until recently. 

 

AMD's withdrawal of support has been linked to NVIDIA's reiteration of CUDA licensing terms, which 

prohibits its use for the development of ZLUDA-like translation layers. While no overt legal action has 

been undertaken by NVIDIA, it is clear that the development of CUDA translation layers threatens its 

market position and lowers the value proposition of its GPUs on price-to-performance metrics. However, 

ZLUDA development continues with plans to support multiple GPU architectures. 
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6. Conclusion 
This primer hopes to serve as a foundational resource for understanding the 

key facets and components of AI compute hardware. Policymakers must gain 

a comprehensive understanding of this hardware that powers transformative 

AI technologies.  

 

The long-term implications of their hardware choices are magnified when 

we consider that computing infrastructure under national missions like 

INDIAai are expected to not only be effective, versatile, and efficient, but 

also future-proof. This document demonstrates how factors like 

performance, efficiency, cost, and the availability of a robust and developer-

friendly software ecosystem play crucial roles in determining the suitability 

of different hardware options for various AI applications. 

 

GPUs remain the popular choice for AI computing. Overreliance on a single 

GPU vendor or proprietary technologies can lead to strategic dependencies 

for nation-states, high switching costs and vendor lock-in, as well as a 

reduced scope for competition and innovation. It is useful to consider 

alternatives like ASICs and FPGAs while taking note of their technical 

characteristics, trade-offs, and market dynamics. 
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Given the importance of this hardware, long-term national strategies for 

building compute infrastructure should encompass exploring and supporting 

the development of alternative hardware and software solutions to mitigate 

the aforementioned risks. Future research documents will identify specific 

policy levers for AI compute governance and pathways through which 

nation-states can develop and maintain strategic footholds in the compute 

hardware global value chain. 
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7. Glossary  
 

A 

 

● AI (Artificial Intelligence):  A broad term encompassing technologies 

that enable computers to mimic human intelligence, such as learning, 

problem-solving, and decision-making. The sources primarily focus 

on AI powered by Machine Learning. 

● AI Accelerator: See Processing Unit. 

● Algorithm: A set of instructions or rules that a computer follows to 

solve a problem or complete a task. In the context of AI, algorithms 

form the "brains" of AI models, learning from data to make 

predictions. 

● Application-Specific Integrated Circuit (ASIC):  A type of processing 

unit custom-designed for a specific task, such as AI inference. ASICs 

offer the highest performance and energy efficiency for their target 

workloads but lack flexibility. Examples: Google's Tensor Processing 

Units (TPUs), Cerebras' Wafer-Scale Engine. 

● ARM:  A UK-based company that designs processing unit blueprints 

and licenses them to other companies like Apple, Samsung, and 

Qualcomm. ARM processors dominate the mobile device market. 
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C 

 

● Central Processing Unit (CPU):  A general-purpose processor that can 

handle a wide range of tasks, including AI workloads. CPUs are found 

in most consumer electronics like PCs, smartphones, and laptops. 

While flexible, CPUs may not be as performant as specialised 

processors for AI. Key manufacturers: Intel, AMD. 

● Chiplet:  A modular approach to chip design where separate parts of a 

chip are dedicated to specific tasks and integrated onto the same 

foundational structure. This allows for better performance, improved 

thermal and power efficiency, and easier manufacturing. 

● Cloud AI:  AI systems deployed in data centres, providing 

computational resources remotely.  Suitable for computationally-

intensive tasks that require significant processing power and memory. 

● Compute Cluster:  A group of interconnected computers (nodes) that 

work together to perform complex computations.  Examples range 

from home PCs connected via LAN to server clusters in data centres. 

● Compute Unified Device Architecture (CUDA):  NVIDIA's 

proprietary software platform specifically designed for programming 

NVIDIA GPUs.  CUDA provides a familiar programming interface 

and allows developers to access the parallel computing capabilities of 

GPUs. It has played a significant role in NVIDIA's dominance in the 

AI hardware market. 
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● CXL (Compute Express Link):  An open industry standard for high-

speed CPU-to-device and CPU-to-memory interconnects, expected 

to play a significant role in the future of AI hardware. 

 

D 

 

● Data Centre:  A large-scale facility that houses and efficiently provides 

computational resources, often used to train and run large AI models.  

Data Centres contain clusters of specialised hardware, including 

processing units, memory, storage, and networking solutions. 

● Deep Learning: A subfield of Machine Learning that uses artificial 

neural networks with multiple layers to analyse and learn from data. 

● Dynamic Random-Access Memory (DRAM): The most common 

type of main memory used in AI systems. It offers relatively high 

capacity and bandwidth but can be a bottleneck for data-intensive AI 

workloads. 

 

 

 

 

E 

 

● Edge AI:  AI systems where computational resources are located closer 

to the source of data, such as on edge devices.  This enables low-latency 
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operation and data privacy.  Examples: autonomous vehicles, fitness 

trackers, smartwatches. 

● Epoch:  One complete pass of an entire dataset through an AI model 

during training. 

● Ethernet:  An open standard networking technology used for 

communication between computers and other devices.  It's widely 

used in both home and enterprise networks, including data centres. 

While not as performant as InfiniBand for AI training, it offers higher 

bandwidth and lower implementation costs. 

 

F 

 

● Field-Programmable Gate Array (FPGA):  A reconfigurable 

integrated circuit that can be programmed to perform specific tasks, 

including AI workloads. FPGAs offer a balance between CPU 

flexibility and ASIC performance.  They are commonly used in 

defence electronics, networking, and space research.  Key 

manufacturers: Intel, AMD. 

● Floating Point Calculation:  A mathematical operation involving 

decimal numbers, performed by computers. AI training often requires 

billions of trillions of floating-point calculations. 

 

G 
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● General-Purpose Technology: A technology with the potential to 

have a transformative impact across various sectors and industries. AI 

is considered a General-Purpose Technology. 

● Global Value Chain (GVC): The interconnected network of activities 

involved in the design, production, distribution, and use of a product 

or service across different geographical locations.  The AI hardware 

market has a complex GVC, with concentration in certain regions and 

companies. 

● Graphics Double Data Rate (GDDR):  A type of DRAM that offers 

higher bandwidth and lower latency than standard DRAM. Often used 

in GPUs for AI workloads when cost is a concern or datasets are 

relatively small.  It's generally less efficient than HBM. 

● Graphics Processing Unit (GPU):  A type of processing unit originally 

designed for graphics rendering but now widely used for AI, 

particularly for training complex models. GPUs excel at parallel 

processing, making them well-suited for AI's matrix operations. 

NVIDIA dominates the GPU market. 

● GPT-3:  A large language model (LLM) developed by OpenAI, 

demonstrating the massive computational requirements of AI training.  

Training GPT-3 involved quadrillions of calculations and took an 

estimated 34 days using 10,000 NVIDIA V100 GPUs. 

 

H 
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● Hard Disk Drive (HDD):  A storage device that uses magnetic disks to 

store data.  HDDs offer large storage capacities at lower costs compared 

to SSDs but are slower. 

● Heterogeneous-Compute Interface for Portability (HIP):  An 

abstraction layer in AMD's ROCm platform that allows developers to 

easily convert CUDA applications to run on AMD GPUs. 

● High Bandwidth Memory (HBM):  A specialised type of memory that 

provides higher bandwidth and lower latency than traditional DRAM.  

HBM stacks memory chips vertically and places them closer to the 

processor, improving data transfer speed and efficiency. 

● High-Performance Computing (HPC):  The use of supercomputers 

and parallel processing techniques to solve complex computational 

problems. AI training often requires HPC infrastructure. 

 

 

 

 

I 

 

● Inference:  The stage where a trained AI model processes new data to 

make predictions or draw conclusions.  Less computationally 

demanding than training but has different requirements, such as 

latency, performance, and efficiency. 



Takshashila Discussion Document 2024-21              A Primer on AI Chips 

60 
 

● InfiniBand:  A high-speed networking technology commonly used in 

HPC and data centre environments.  It offers high bandwidth and low 

latency, making it suitable for data-intensive AI workloads. InfiniBand 

is known for its high data integrity, which is crucial for AI training. 

● Instruction Set Architecture (ISA):  The fundamental set of 

instructions that a processor can understand and execute. Intel and 

AMD processors are based on the x86 ISA. 

● Interconnect:  A communication channel that enables data transfer 

between different hardware components, such as processing units, 

memory, and storage. Types: on-chip, chip-to-chip, node-to-node. 

 

L 

 

● Latency: The time delay between a request for data and the data's 

arrival. Low latency is critical for real-time AI applications. 

● Large Language Model (LLM):  A type of AI model trained on massive 

text datasets to understand and generate human-like language.  

Examples: OpenAI's ChatGPT. 

 

M 

 

● Machine Learning (ML):  A type of AI that enables computers to learn 

from data without explicit programming. ML algorithms identify 



Takshashila Discussion Document 2024-21              A Primer on AI Chips 

61 
 

patterns and make predictions based on data.  The sources primarily 

focus on AI powered by ML. 

● Memory:  A temporary storage space where a computer stores data 

that it is actively using.  Different types of memory are used in AI 

systems, including DRAM, HBM, and GDDR. 

● Micron Technology:  A leading manufacturer of memory and storage 

solutions, including DRAM, HBM, and SSDs. 

 

N 

 

● Natural Language Processing (NLP):  A subfield of AI focused on 

enabling computers to understand, interpret, and generate human 

language. 

● Networking:  The interconnection of computers and other devices to 

enable communication and data exchange. Networking technologies 

like Ethernet and InfiniBand are essential for AI hardware, especially 

in data centre environments. 

● Neural Processing Unit (NPU):  A specialised processing unit 

integrated into some CPUs, specifically designed for AI workloads. 

NPUs aim to improve the performance of CPUs for AI tasks. 

● Node:  A single computer or server within a compute cluster. Nodes 

are interconnected to enable distributed computing for AI workloads. 

● Non-Volatile Memory Express (NVMe):  A communication protocol 

for SSDs that offers high-speed storage and retrieval, low latency, and 
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high-throughput. NVMe SSDs are commonly used in data centres for 

AI workloads. 

● NVLink:  NVIDIA's proprietary chip-to-chip interconnect 

technology that enables high-bandwidth, low-latency connections 

between multiple NVIDIA GPUs. 

 

O 

 

● On-Chip Interconnect:  A type of interconnect that facilitates 

communication between different components within a System-on-

Chip (SoC). Chiplets and advanced packaging technologies are 

examples of on-chip interconnects. 

● OpenAI:  An AI research and deployment company known for 

developing large language models, including GPT-3. 

 

P 

 

● Packaging Technology:  Techniques used to enclose and connect 

semiconductor chips to other components on a printed circuit board. 

Advanced packaging technologies, such as chiplets and 3D packaging, 

are critical for improving the performance and efficiency of AI 

hardware. 
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● Parallel Processing:  The ability to execute multiple computations 

simultaneously, significantly speeding up complex tasks. GPUs excel 

at parallel processing, making them suitable for AI workloads. 

● Peripheral Component Interconnect Express (PCIe):  A widely used 

expansion standard that enables communication between various 

hardware components, including processing units, storage, and 

networking cards. 

● Performance:  A measure of how quickly and efficiently a processing 

unit can handle AI workloads. Factors considered include processing 

power, memory bandwidth, latency, scalability, and programmability. 

● Processing-in-Memory (PIM):  An emerging memory technology 

that integrates processing capabilities into memory itself, reducing data 

movement and improving efficiency. 

● Processing Unit:  The "engine" of an AI system responsible for 

executing the mathematical and algorithmic operations involved in 

training and inference. Types: CPUs, GPUs, ASICs, FPGAs. Also 

known as an AI accelerator. 

● Programmability: The ease with which a processing unit can be 

programmed to perform specific tasks. A developer-friendly 

programming environment is crucial for AI hardware adoption. 

● Programming Language:  A formal language used to write instructions 

for computers to execute. Python is a popular programming language 

for AI development due to its simplicity and extensive libraries. 
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● Programming Platform:  A set of software tools, libraries, and APIs 

that provide a framework for developing and deploying AI 

applications.  Examples: NVIDIA's CUDA, AMD's ROCm. 

● Proprietary Technology: Technology that is owned and controlled by 

a specific company, limiting access and competition. NVIDIA's 

CUDA is an example of proprietary technology that has contributed 

to its market dominance but also raised concerns about vendor lock-

in. 

● PyTorch:  An open-source AI framework known for its flexibility and 

research-oriented features. 

 

R 

 

● Radeon Open Compute (ROCm):  AMD's open-source software 

platform for programming AMD GPUs, designed to compete with 

NVIDIA's CUDA. ROCm offers an abstraction layer (HIP) for easier 

porting of CUDA applications and benefits from community 

contributions. 

● Random-Access Memory (RAM):  A type of computer memory that 

allows data to be accessed randomly, regardless of its physical location 

on the storage medium. 

 

S 
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● Scalability:  The ability of an AI system to handle increasing workloads 

or larger datasets by adding more resources.  Scalability is crucial for 

data centres and cloud AI platforms. 

● Samsung:  A South Korean multinational conglomerate that is a 

leading manufacturer of memory chips, SSDs, and advanced 

packaging technologies. 

● SK Hynix:  A South Korean memory semiconductor manufacturer, 

specialising in DRAM, NAND flash, and other memory products. 

● Small Modular Reactor (SMR):  A type of nuclear reactor that is 

smaller and more scalable than traditional reactors.  Microsoft is 

exploring the use of SMRs to power its data centres. 

● Software Ecosystem:  The collection of software components, 

including frameworks, programming languages, and platforms, that 

support the development and deployment of AI applications. A robust 

and developer-friendly software ecosystem is crucial for the success of 

AI hardware. 

● Solid State Drive (SSD):  A type of storage device that uses flash 

memory to store data. SSDs offer significantly faster read and write 

speeds compared to HDDs.  NVMe SSDs are commonly used in data 

centres for AI workloads. 

● System-on-Chip (SoC):  An integrated circuit that combines multiple 

components of a computer system, such as a CPU, GPU, memory, 

and storage, onto a single chip. SoCs are commonly used in mobile 

devices and embedded systems. 
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● Taiwan Semiconductor Manufacturing Company (TSMC):  A 

Taiwanese multinational semiconductor contract manufacturing and 

design company.  TSMC is a major manufacturer of CPUs, GPUs, 

and other advanced processors. 

● Tape Storage:  A storage technology that uses magnetic tape to store 

data. Tape storage is often used for archival purposes and for storing 

extremely large datasets that do not require quick retrieval. 

● Tensor Processing Unit (TPU):  Google's custom-designed ASIC 

specifically optimised for AI workloads, particularly those using 

Google's TensorFlow framework. 

● TensorFlow:  An open-source AI framework developed by Google, 

known for its scalability and performance.  TensorFlow is heavily 

optimised for Google's TPUs. 

● Training:  The process of creating an AI model by "teaching" an 

algorithm using data.  During training, the AI model learns to identify 

patterns and make predictions based on the provided data. 

 

U 

 

● Ultra Accelerator Link (UALink):  A proposed industry standard for 

an Ethernet-based interconnect designed for high-speed GPU-to-
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GPU communication. UALink aims to create an open alternative to 

proprietary solutions like NVIDIA's NVLink. 

● Ultra Ethernet Consortium (UEC):  An industry initiative backed by 

major players in the AI hardware and software industry to optimise 

Ethernet for high-performance computing and AI networking. 

● Ultra Path Interconnect (UPI):  Intel's proprietary chip-to-chip 

interconnect technology that enables high-speed communication 

between multiple Intel CPUs. 

● Universal Chiplet Interconnect Express (UCIe):  An open industry 

standard for interconnecting chiplets from different vendors, 

promoting interoperability and innovation in AI hardware. 

 

V 

 

● Vendor Lock-In:  A situation where a customer becomes reliant on a 

single vendor for products or services, making it difficult and costly to 

switch to a competitor.  Proprietary technologies can lead to vendor 

lock-in. 

 

W 

 

● Wafer-Scale Engine:  A massive AI processor developed by Cerebras 

Systems, known for its large size and processing power by virtue of 

having been fabricated on an entire silicon wafer. 
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This glossary provides a starting point for understanding the key terms and 

concepts related to AI hardware. Further exploration of the sources and other 

resources is encouraged for a deeper understanding. 
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